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We -shall assume that the nuclei can be treated
classically, so that
1=y exp(—NZe /RT). (5)

The electrons must, however, be described by Iermi-
Dirac statistics. In the Thomas-Fermi approximation,
_we have?

& f - pap
"= o 14 expl (32— Nebo—p) /6T ]
=dx (2mk Th2) 5 (ny), (6)
where
Lu(n)= [ ym(ke)iay, ™
0
1= (Aeps+u) /T, (8)

and the free-electron chemical potential u is such that
n—o="4x 2mkTh™2),;(n,,), (9)

For purposes of numrerical calculation, it is con-
venient to introduce the following units of length and
energy’® ’

I* / On? }_ 0.468479X 10~ %cm
B 4ﬁn>&eﬂ\1zsz> ==z
and :
O\=32mN\ie 2= 22.6532A‘ev , (12)
and also the quantities
s=rfr, O=KT/G, (13)
de= (6/722%)}=0.8471308423, (14)
- ne=0""(de) T (¢4/x). (13)

. _ "
Combining all the above, the Poisson equation (3)
reduces to

o' (x) =5 (4e) (L3 (n4) — 1 (ns,) exp[—Z (ne—10) 1},

(16)
with boundary conditions
b (0) =1,
lim g (0) =@/ u=sbss (A1)

For given temperature, bulk density of material,
and value of A, the procedure is as follows: 7_g can be
readily caleulated from the bulk density, 0 found from
(13), I;y(n,) from (9), and 7, from the tables and
asymptotic expansions for /; given by McDougall and

#Sce, for example, Feynman, Mectropolis, and Teller, Phys.
Rev. 75, 1561 (1949), Sec. V.

“These are the usual Thomas-Fermi units except that e has
been replaced by e,

U

Stoner.” The differential equation (16) can then be
integrated to give ¢4 (), and hence 5.(x) from (13).
The distribution of particles about a given nucleus
then follows from (6) and the ecquivalent of (3)

By =140 exp[ —Z (n:—1,) - (18)

The net charge surrounding the given nucleus is

gr=4mr? f (AZen—Nen_.) x¥dx. (19)
0

Using (6), (18), and the differential equation (16),
this can be written

g=—N\Ze f o4 wdx
0

= —M\e[xg'— ¢4 "= —AZe, (20)

from the boundary conditions (17). Thus ¢, is, as it
should be, the negative of the charge on the given
nucleus.

b. Particle Distributions about an Electron

Singling out a specific electron, let the average
electrostatic potential (due to all charges, including the
electron in question) and the average charge density
about this electron be, respectively, ¥_(r) and

o (r) =NZeiry_(r) —Nenn— _(7). (21)

These quantities are related through the Poisson
equation '

A= —dgp_=—drhe(Zi——n__), (22)
with boundary conditions
limry_(r)=—2xe
0
lip; v_(r)=0. (23)

TFor a neutral plasma, it follows irom symmetry
considerations that the distribution of positive charge
about an electron must be identical in form to the
distribution of negative charge about a nucleus. Thus
from (6),

np =L = 4wl 2mk Th ) (ny).  (24)
Letting
1= (A\eY—+p) [k T=\ep_/k T+, (25)

then analogously to (6)

e = dx (2mkTh™2);(n-). (26)
Introducing a function ¢_(x) defined by
1-=07(4e) " (o-/x), (27)

7 J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London),
237A, 67 (1938).




